Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518198

ABSTRACT

A substantial proportion of patients who have recovered from coronavirus disease-2019 (COVID-19) experience COVID-19-related symptoms even months after hospital discharge. We extensively immunologically characterized patients who recovered from COVID-19. In these patients, T cells were exhausted, with increased PD-1+ T cells, as compared with healthy controls. Plasma levels of IL-1ß, IL-1RA, and IL-8, among others, were also increased in patients who recovered from COVID-19. This altered immunophenotype was mirrored by a reduced ex vivo T cell response to both nonspecific and specific stimulation, revealing a dysfunctional status of T cells, including a poor response to SARS-CoV-2 antigens. Altered levels of plasma soluble PD-L1, as well as of PD1 promoter methylation and PD1-targeting miR-15-5p, in CD8+ T cells were also observed, suggesting abnormal function of the PD-1/PD-L1 immune checkpoint axis. Notably, ex vivo blockade of PD-1 nearly normalized the aforementioned immunophenotype and restored T cell function, reverting the observed post-COVID-19 immune abnormalities; indeed, we also noted an increased T cell-mediated response to SARS-CoV-2 peptides. Finally, in a neutralization assay, PD-1 blockade did not alter the ability of T cells to neutralize SARS-CoV-2 spike pseudotyped lentivirus infection. Immune checkpoint blockade ameliorates post-COVID-19 immune abnormalities and stimulates an anti-SARS-CoV-2 immune response.


Subject(s)
COVID-19/complications , Cytokines/immunology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Case-Control Studies , Cytokines/drug effects , DNA Methylation , Female , Humans , Immunophenotyping , In Vitro Techniques , Interleukin 1 Receptor Antagonist Protein/drug effects , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1beta/drug effects , Interleukin-1beta/immunology , Interleukin-8/drug effects , Interleukin-8/immunology , Male , MicroRNAs/metabolism , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Promoter Regions, Genetic , Post-Acute COVID-19 Syndrome
2.
Front Immunol ; 12: 752612, 2021.
Article in English | MEDLINE | ID: covidwho-1456293

ABSTRACT

Background: Lymphopenia and the neutrophil/lymphocyte ratio may have prognostic value in COVID-19 severity. Objective: We investigated neutrophil subsets and functions in blood and bronchoalveolar lavage (BAL) of COVID-19 patients on the basis of patients' clinical characteristics. Methods: We used a multiparametric cytometry profiling based to mature and immature neutrophil markers in 146 critical or severe COVID-19 patients. Results: The Discovery study (38 patients, first pandemic wave) showed that 80% of Intensive Care Unit (ICU) patients develop strong myelemia with CD10-CD64+ immature neutrophils (ImNs). Cellular profiling revealed three distinct neutrophil subsets expressing either the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the interleukin-3 receptor alpha (CD123), or programmed death-ligand 1 (PD-L1) overrepresented in ICU patients compared to non-ICU patients. The proportion of LOX-1- or CD123-expressing ImNs is positively correlated with clinical severity, cytokine storm (IL-1ß, IL-6, IL-8, TNFα), acute respiratory distress syndrome (ARDS), and thrombosis. BALs of patients with ARDS were highly enriched in LOX-1-expressing ImN subsets and in antimicrobial neutrophil factors. A validation study (118 patients, second pandemic wave) confirmed and strengthened the association of the proportion of ImN subsets with disease severity, invasive ventilation, and death. Only high proportions of LOX-1-expressing ImNs remained strongly associated with a high risk of severe thrombosis independently of the plasma antimicrobial neutrophil factors, suggesting an independent association of ImN markers with their functions. Conclusion: LOX-1-expressing ImNs may help identifying COVID-19 patients at high risk of severity and thrombosis complications.


Subject(s)
COVID-19/complications , Neutrophils/immunology , Scavenger Receptors, Class E/genetics , Thrombosis/etiology , Adult , Aged , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Critical Illness , Female , Humans , Interleukin-3 Receptor alpha Subunit/genetics , Interleukin-3 Receptor alpha Subunit/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/immunology , SARS-CoV-2/physiology , Scavenger Receptors, Class E/immunology , Thrombosis/genetics , Thrombosis/immunology
3.
Int Immunopharmacol ; 101(Pt B): 108201, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1440134

ABSTRACT

One of the major clinical features of COVID-19 is a hyperinflammatory state, which is characterized by high expression of cytokines (such as IL-6 and TNF-α), chemokines (such as IL-8) and growth factors and is associated with severe forms of COVID-19. For this reason, the control of the "cytokine storm" represents a key issue in the management of COVID-19 patients. In this study we report evidence that the release of key proteins of the COVID-19 "cytokine storm" can be inhibited by mimicking the biological activity of microRNAs. The major focus of this report is on IL-8, whose expression can be modified by the employment of a molecule mimicking miR-93-5p, which is able to target the IL-8 RNA transcript and modulate its activity. The results obtained demonstrate that the production of IL-8 protein is enhanced in bronchial epithelial IB3-1 cells by treatment with the SARS-CoV-2 Spike protein and that IL-8 synthesis and extracellular release can be strongly reduced using an agomiR molecule mimicking miR-93-5p.


Subject(s)
Epithelial Cells/immunology , Interleukin-8/immunology , MicroRNAs , Spike Glycoprotein, Coronavirus/immunology , Bronchi/cytology , Cell Line , Humans , Interleukin-8/genetics
4.
J Infect Dis ; 224(4): 575-585, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1358459

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in patients with COVID-19. We found that neutrophils from patients with severe COVID-19 express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2, and show a strong association with platelets. Production of CXCL8 correlated with plasma concentrations of lactate dehydrogenase and D-dimer. Whole blood assays revealed that neutrophils from patients with severe COVID-19 show a clear association with immunoglobulin G (IgG) immune complexes. Moreover, we found that sera from patients with severe disease contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies from patients with severe COVID-19 displayed a higher proinflammatory profile compared with antibodies from patients with mild disease. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils, worsening the course of COVID-19.


Subject(s)
Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Neutrophil Activation/immunology , Adult , Aged , Antibodies, Viral/blood , Antigen-Antibody Complex/blood , Antigens, CD/immunology , CD11b Antigen/immunology , Cell Adhesion Molecules/immunology , Female , GPI-Linked Proteins/immunology , Humans , Immunoglobulin G/blood , Interleukin-8/immunology , Male , Middle Aged , Neutrophils/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Young Adult
5.
Med Sci (Basel) ; 9(2)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1234776

ABSTRACT

A novel coronavirus related to a condition known as a severe acute respiratory syndrome (SARS) was termed as SARS Coronavirus-19 (SARS-CoV-2 or COVID-19), which has caused an unprecedented global pandemic. Extensive efforts have been dedicated worldwide towards determining the mechanisms of COVID-19 associated pathogenesis with the goals of devising potential therapeutic approaches to mitigate or overcome comorbidities and mortalities. While the mode of SARS-CoV-2 infection, its structural configuration, and mechanisms of action, including the critical roles of the Spike protein have been substantially explored, elucidation of signaling pathways regulating its cellular responses is yet to be fully determined. Notably, phosphoinositide 3-kinases (PI3K) and its downstream pathway have been exploited among potential therapeutic targets for SARS-CoV-2, and its activation modulates the release of cytokines such as IL-8. To that end, the current studies were sought to determine the response of the SARS-CoV-2 Spike S1 protein on PI3K-mediated IL-8 release using relevant and widely used cellular models. Overall, these studies indicate that PI3K signaling does not directly mediate Spike S1 protein-induced IL-8 release in these cellular models.


Subject(s)
COVID-19/immunology , Interleukin-8/immunology , Phosphatidylinositol 3-Kinases/immunology , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Humans , SARS-CoV-2 , Signal Transduction
6.
Front Immunol ; 12: 656350, 2021.
Article in English | MEDLINE | ID: covidwho-1191682

ABSTRACT

The new SARS-CoV-2 virus differs from the pandemic Influenza A virus H1N1 subtype (H1N1pmd09) how it induces a pro-inflammatory response in infected patients. This study aims to evaluate the involvement of SNPs and tissue expression of IL-17A and the neutrophils recruitment in post-mortem lung samples from patients who died of severe forms of COVID-19 comparing to those who died by H1N1pdm09. Twenty lung samples from patients SARS-CoV-2 infected (COVID-19 group) and 10 lung samples from adults who died from a severe respiratory H1N1pdm09 infection (H1N1 group) were tested. The tissue expression of IL-8/IL-17A was identified by immunohistochemistry, and hematoxylin and eosin (H&E) stain slides were used for neutrophil scoring. DNA was extracted from paraffin blocks, and genotyping was done in real time-PCR for two IL17A target polymorphisms. Tissue expression increasing of IL-8/IL-17A and a higher number of neutrophils were identified in samples from the H1N1 group compared to the COVID-19 group. The distribution of genotype frequencies in the IL17A gene was not statistically significant between groups. However, the G allele (GG and GA) of rs3819025 was correlated with higher tissue expression of IL-17A in the COVID-19 group. SARS-CoV-2 virus evokes an exacerbated response of the host's immune system but differs from that observed in the H1N1pdm09 infection since the IL-8/IL-17A tissue expression, and lung neutrophilic recruitment may be decreased. In SNP rs3819025 (G/A), the G allele may be considered a risk allele in the patients who died for COVID-19.


Subject(s)
COVID-19 , Gene Expression Regulation/immunology , Interleukin-17 , Interleukin-8 , Lung/immunology , Neutrophils/immunology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Female , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/pathology , Lung/virology , Male , Middle Aged , Neutrophils/pathology , Neutrophils/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
7.
Front Immunol ; 12: 626235, 2021.
Article in English | MEDLINE | ID: covidwho-1082695

ABSTRACT

Objectives: The coordinated immune response of the host is the key of the successful combat of the body against SARS-CoV-2 infection and is decisive for the development and progression of COVID-19. In this study, we aimed to investigate whether the immunological phenotype of patients are associated with duration of illness in patients with severe COVID-19. Method: In this single-center study, 69 patients with severe or critical COVID-19 were recruited retrospectively. Immunological parameters including counts of white blood cells, neutrophils, lymphocytes, the neutrophil-to-lymphocyte ratio, and levels of circulating cytokines and cytokine receptors were screened for their association with disease severity, survival and duration of illness of COVID-19. Results: Our data confirmed previous results that neutrophil-to-lymphocyte ratio and circulating levels of IL-6 represent prominent biomarker for the prediction of disease severity and survival of COVID-19. However, this study shows for the first time that duration of illness in patients with severe COVID-19 is positively associated with serum levels of IL-8 (P=0.004) and soluble IL-2Rα (P=0.025). Conclusion: The significant association of duration of illness with circulating levels of IL-8 and soluble IL-2Rα in patients with severe COVID-19 implicates that neutrophils and T cells are involved in the evolution of COVID-19.


Subject(s)
COVID-19/blood , Interleukin-8/blood , Receptors, Interleukin-2/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/immunology , Cytokines/blood , Cytokines/immunology , Female , Humans , Interleukin-8/immunology , Leukocyte Count , Lymphocyte Count , Lymphocytes/immunology , Male , Middle Aged , Neutrophils/immunology , Receptors, Interleukin-2/immunology , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index
8.
Int Immunol ; 33(4): 241-247, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1066348

ABSTRACT

An expanded myeloid cell compartment is a hallmark of severe coronavirus disease 2019 (COVID-19). However, data regarding myeloid cell expansion have been collected in Europe, where the mortality rate by COVID-19 is greater than those in other regions including Japan. Thus, characteristics of COVID-19-induced myeloid cell subsets remain largely unknown in the regions with low mortality rates. Here, we analyzed cellular dynamics of myeloid-derived suppressor cell (MDSC) subsets and examined whether any of them correlate with disease severity and prognosis, using blood samples from Japanese COVID-19 patients. We observed that polymorphonuclear (PMN)-MDSCs, but not other MDSC subsets, transiently expanded in severe cases but not in mild or moderate cases. Contrary to previous studies in Europe, this subset selectively expanded in survivors of severe cases and subsided before discharge, but such transient expansion was not observed in non-survivors in Japanese cohort. Analysis of plasma cytokine/chemokine levels revealed positive correlation of PMN-MDSC frequencies with IL-8 levels, indicating the involvement of IL-8 on recruitment of PMN-MDSCs to peripheral blood following the onset of severe COVID-19. Our data indicate that transient expansion of the PMN-MDSC subset results in improved clinical outcome. Thus, this myeloid cell subset may be a predictor of prognosis in cases of severe COVID-19 in Japan.


Subject(s)
COVID-19/pathology , Interleukin-8/blood , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Humans , Interleukin-8/immunology , Japan , Leukocyte Count , Myeloid Cells/immunology , Neutrophil Activation/immunology
9.
Nat Immunol ; 22(3): 322-335, 2021 03.
Article in English | MEDLINE | ID: covidwho-1060966

ABSTRACT

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Interleukin-18/immunology , Macrophages/immunology , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , Aged , Aged, 80 and over , Animals , Bronchoalveolar Lavage , Case-Control Studies , Chlorocebus aethiops , Cohort Studies , Female , France , Humans , Immunophenotyping , Interleukin-10/immunology , Interleukin-15/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Male , Middle Aged , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis , Vero Cells , Young Adult
10.
Eur Rev Med Pharmacol Sci ; 24(23): 12536-12544, 2020 12.
Article in English | MEDLINE | ID: covidwho-995014

ABSTRACT

OBJECTIVE: We aimed to study the dynamics of cytokines and lymphocyte subsets and their correlation with the prognosis of patients with severe COVID-19. PATIENTS AND METHODS: The lymphocyte subsets and cytokines of 31 patients with severe COVID-19 (7 deaths and 24 survivals) were longitudinally analyzed. RESULTS: The mean age of enrolled patients was 64 years, 24 (77.4%) patients were men, and 23 (74.2%) patients had comorbidities. Compared with survival group, the death group showed significant and sustained increases in the levels of IL-6, IL-8, and IL-10 from baseline to 28 days after admission (all p<0.05). No significant differences were observed in the levels of TNF-α, IL-1b, IL-2, IL-4, IL-5, IL-12P70, IL-17, IFN-α, and IFN-γ between the death group and survival group during the follow-up (all p>0.05). The absolute counts of CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD45+ T cells were lower in both survival group and death group patients from hospital admission to 3 days after admission, and gradually recovered in 4 to 35 days in the survival group, but continually stayed at low levels in the death group during the follow-up. CONCLUSIONS: The kinetic changes of cytokines and lymphocyte subsets are related with the prognosis of patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , T-Lymphocyte Subsets/immunology , Aged , Aged, 80 and over , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Female , Humans , Interferon-alpha/immunology , Interleukin-10/immunology , Interleukin-12/immunology , Interleukin-17/immunology , Interleukin-1beta/immunology , Interleukin-2/immunology , Interleukin-4/immunology , Interleukin-5/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocyte Common Antigens/immunology , Longitudinal Studies , Lymphocyte Count , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology
11.
BMC Pulm Med ; 20(1): 301, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-925848

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly reached pandemic proportions. Given that the main target of SARS-CoV-2 are lungs leading to severe pneumonia with hyperactivation of the inflammatory cascade, we conducted a prospective study to assess alveolar inflammatory status in patients with moderate to severe COVID-19. METHODS: Diagnostic bronchoalveolar lavage (BAL) was performed in 33 adult patients with SARS-CoV-2 infection by real-time PCR on nasopharyngeal swab admitted to the Intensive care unit (ICU) (n = 28) and to the Intermediate Medicine Ward (IMW) (n = 5). We analyze the differential cell count, ultrastructure of cells and Interleukin (IL)6, 8 and 10 levels. RESULTS: ICU patients showed a marked increase in neutrophils (1.24 × 105 ml- 1, 0.85-2.07), lower lymphocyte (0.97 × 105 ml- 1, 0.024-0.34) and macrophages fractions (0.43 × 105 ml- 1, 0.34-1.62) compared to IMW patients (0.095 × 105 ml- 1, 0.05-0.73; 0.47 × 105 ml- 1, 0.28-1.01 and 2.14 × 105 ml- 1, 1.17-3.01, respectively) (p < 0.01). Study of ICU patients BAL by electron transmission microscopy showed viral particles inside mononuclear cells confirmed by immunostaining with anti-viral capsid and spike antibodies. IL6 and IL8 were significantly higher in ICU patients than in IMW (IL6 p < 0.01, IL8 p < 0.0001), and also in patients who did not survive (IL6 p < 0.05, IL8 p = 0.05 vs. survivors). IL10 did not show a significant variation between groups. Dividing patients by treatment received, lower BAL concentrations of IL6 were found in patients treated with steroids as compared to those treated with tocilizumab (p < 0.1) or antivirals (p < 0.05). CONCLUSIONS: Alveolitis, associated with COVID-19, is mainly sustained by innate effectors which showed features of extensive activation. The burden of pro-inflammatory cytokines IL6 and IL8 in the broncho-alveolar environment is associated with clinical outcome.


Subject(s)
Bronchoalveolar Lavage Fluid/immunology , Coronavirus Infections/immunology , Inflammation/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocytes/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Drug Combinations , Female , Humans , Hydroxychloroquine/therapeutic use , Intensive Care Units , Interleukin-10/immunology , Italy , Leukocytes, Mononuclear/virology , Lopinavir/therapeutic use , Lung/cytology , Lung/virology , Lymphocytes/immunology , Male , Microscopy, Electron, Transmission , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial/methods , Ritonavir/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , Virion/metabolism , Virion/ultrastructure , COVID-19 Drug Treatment
12.
Cells ; 9(11)2020 10 29.
Article in English | MEDLINE | ID: covidwho-902483

ABSTRACT

Cumulative data link cytokine storms with coronavirus disease 2019 (COVID-19) severity. The precise identification of immune cell subsets in bronchoalveolar lavage (BAL) and their correlation with COVID-19 disease severity are currently being unraveled. Herein, we employed iterative clustering and guide-gene selection 2 (ICGS2) as well as uniform manifold approximation and projection (UMAP) dimensionality reduction computational algorithms to decipher the complex immune and cellular composition of BAL, using publicly available datasets from a total of 68,873 single cells derived from two healthy subjects, three patients with mild COVID-19, and five patients with severe COVID-19. Our analysis revealed the presence of neutrophils and macrophage cluster-1 as a hallmark of severe COVID-19. Among the identified gene signatures, IFITM2, IFITM1, H3F3B, SAT1, and S100A8 gene signatures were highly associated with neutrophils, while CCL8, CCL3, CCL2, KLF6, and SPP1 were associated with macrophage cluster-1 in severe-COVID-19 patients. Interestingly, although macrophages were also present in healthy subjects and patients with mild COVID-19, they had different gene signatures, indicative of interstitial and cluster-0 macrophage (i.e., FABP4, APOC1, APOE, C1QB, and NURP1). Additionally, MALAT1, NEAT1, and SNGH25 were downregulated in patients with mild and severe COVID-19. Interferon signaling, FCγ receptor-mediated phagocytosis, IL17, and Tec kinase canonical pathways were enriched in patients with severe COVID-19, while PD-1 and PDL-1 pathways were suppressed. A number of upstream regulators (IFNG, PRL, TLR7, PRL, TGM2, TLR9, IL1B, TNF, NFkB, IL1A, STAT3, CCL5, and others) were also enriched in BAL cells from severe COVID-19-affected patients compared to those from patients with mild COVID-19. Further analyses revealed genes associated with the inflammatory response and chemotaxis of myeloid cells, phagocytes, and granulocytes, among the top activated functional categories in BAL from severe COVID-19-affected patients. Transcriptome data from another cohort of COVID-19-derived peripheral blood mononuclear cells (PBMCs) revealed the presence of several genes common to those found in BAL from patients with severe and mild COVID-19 (IFI27, IFITM3, IFI6, IFIT3, MX1, IFIT1, OASL, IFI30, OAS1) or to those seen only in BAL from severe-COVID-19 patients (S100A8, IFI44, IFI44L, CXCL8, CCR1, PLSCR1, EPSTI1, FPR1, OAS2, OAS3, IL1RN, TYMP, BCL2A1). Taken together, our data reveal the presence of neutrophils and macrophage cluster-1 as the main immune cell subsets associated with severe COVID-19 and identify their inflammatory and chemotactic gene signatures, also partially reflected systemically in the circulation, for possible diagnostic and therapeutic interventions.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Macrophages/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Adult , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Case-Control Studies , Cohort Studies , Computational Biology/methods , Gene Expression Profiling/methods , Humans , Immunity, Innate , Interleukin-8/immunology , Membrane Proteins/immunology , SARS-CoV-2/isolation & purification , Single-Cell Analysis/methods
13.
Eur J Clin Invest ; 51(1): e13429, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-873289

ABSTRACT

INTRODUCTION: The coronavirus pandemic has affected more than 20 million people so far. Elevated cytokines and suppressed immune responses have been hypothesized to set off a cytokine storm, contributing to ARDS, multiple-organ failure and, in the most severe cases, death. We aimed to quantify the differences in the circulating levels of major inflammatory and immunological markers between severe and nonsevere COVID-19 patients. METHODS: Relevant studies were identified from PubMed, EMBASE, Web of Science, SCOPUS and preprint servers. Risk of bias was assessed for each study, using appropriate checklists. All studies were described qualitatively and a subset was included in the meta-analysis, using forest plots. RESULTS: Based on 23 studies, mean cytokine levels were significantly higher (IL-6: MD, 19.55 pg/mL; CI, 14.80, 24.30; IL-8: MD, 19.18 pg/mL; CI, 2.94, 35.43; IL-10: MD, 3.66 pg/mL; CI, 2.41, 4.92; IL-2R: MD, 521.36 U/mL; CI, 87.15, 955.57; and TNF-alpha: MD, 1.11 pg/mL; CI, 0.07, 2.15) and T-lymphocyte levels were significantly lower (CD4+ T cells: MD, -165.28 cells/µL; CI, -207.58, -122.97; CD8+ T cells: MD, -106.51 cells/µL; CI, -128.59, -84.43) among severe cases as compared to nonsevere ones. There was heterogeneity across studies due to small sample sizes and nonuniformity in outcome assessment and varied definitions of disease severity. The overall quality of studies was sub-optimal. CONCLUSION: Severe COVID-19 is characterized by significantly increased levels of pro-inflammatory cytokines and reduced T lymphocytes. Well-designed and adequately powered prospective studies are needed to amplify the current evidence and provide definitive answers to dilemmas regarding timing and type of anti-COVID-19 therapy particularly in severe patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , CD4 Lymphocyte Count , COVID-19/blood , Humans , Interleukin-10/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Lymphocyte Count , Receptors, Interleukin-2/immunology , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology
14.
Signal Transduct Target Ther ; 5(1): 235, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-841900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.


Subject(s)
Apoptosis/immunology , Betacoronavirus/pathogenicity , Caspase 8/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Necroptosis/immunology , Pneumonia, Viral/immunology , Pulmonary Fibrosis/immunology , Animals , COVID-19 , Caspase 8/genetics , Cell Line, Tumor , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
15.
JCI Insight ; 5(13)2020 07 09.
Article in English | MEDLINE | ID: covidwho-732194

ABSTRACT

BACKGROUNDFatal cases of COVID-19 are increasing globally. We retrospectively investigated the potential of immunologic parameters as early predictors of COVID-19.METHODSA total of 1018 patients with confirmed COVID-19 were enrolled in our 2-center retrospective study. Clinical feature, laboratory test, immunological test, radiological findings, and outcomes data were collected. Univariate and multivariable logistic regression analyses were performed to evaluate factors associated with in-hospital mortality. Receiver operator characteristic (ROC) curves and survival curves were plotted to evaluate their clinical utility.RESULTSThe counts of all T lymphocyte subsets were markedly lower in nonsurvivors than in survivors, especially CD8+ T cells. Among all tested cytokines, IL-6 was elevated most significantly, with an upward trend of more than 10-fold. Using multivariate logistic regression analysis, IL-6 levels of more than 20 pg/mL and CD8+ T cell counts of less than 165 cells/µL were found to be associated with in-hospital mortality after adjusting for confounding factors. Groups with IL-6 levels of more than 20 pg/mL and CD8+ T cell counts of less than 165 cells/µL had a higher percentage of older and male patients as well as a higher proportion of patients with comorbidities, ventilation, intensive care unit admission, shock, and death. Furthermore, the receiver operating curve of the model combining IL-6 (>20 pg/mL) and CD8+ T cell counts (<165 cells/µL) displayed a more favorable discrimination than that of the CURB-65 score. The Hosmer-Lemeshow test showed a good fit of the model, with no statistical significance.CONCLUSIONIL-6 (>20 pg/mL) and CD8+ T cell counts (<165 cells/µL) are 2 reliable prognostic indicators that accurately stratify patients into risk categories and predict COVID-19 mortality.FundingThis work was supported by funding from the National Natural Science Foundation of China (no. 81772477 and 81201848).


Subject(s)
CD8-Positive T-Lymphocytes , Coronavirus Infections/immunology , Hospital Mortality , Interleukin-6/immunology , Pneumonia, Viral/immunology , Aged , Area Under Curve , Betacoronavirus , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/mortality , Female , Humans , Interleukin-10/immunology , Interleukin-8/immunology , Logistic Models , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/epidemiology , Male , Middle Aged , Multivariate Analysis , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Prognosis , ROC Curve , Receptors, Interleukin-2/immunology , Retrospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alpha/immunology
16.
Nat Med ; 26(10): 1636-1643, 2020 10.
Article in English | MEDLINE | ID: covidwho-728994

ABSTRACT

Several studies have revealed that the hyper-inflammatory response induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major cause of disease severity and death. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α and IL-1ß in hospitalized patients with coronavirus disease 2019 (COVID-19) upon admission to the Mount Sinai Health System in New York. Patients (n = 1,484) were followed up to 41 d after admission (median, 8 d), and clinical information, laboratory test results and patient outcomes were collected. We found that high serum IL-6, IL-8 and TNF-α levels at the time of hospitalization were strong and independent predictors of patient survival (P < 0.0001, P = 0.0205 and P = 0.0140, respectively). Notably, when adjusting for disease severity, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF-α serum levels remained independent and significant predictors of disease severity and death. These findings were validated in a second cohort of patients (n = 231). We propose that serum IL-6 and TNF-α levels should be considered in the management and treatment of patients with COVID-19 to stratify prospective clinical trials, guide resource allocation and inform therapeutic options.


Subject(s)
Coronavirus Infections/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Pneumonia, Viral/immunology , Tumor Necrosis Factor-alpha/immunology , Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Cytokines/immunology , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , SARS-CoV-2 , Severity of Illness Index , Survival Rate
17.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: covidwho-676865

ABSTRACT

BACKGROUNDElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare with those observed in critically ill patients with acute respiratory distress syndrome (ARDS) or sepsis due to other causes.METHODSWe used a Luminex assay to determine expression of 76 cytokines from plasma of hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients. Our analysis focused on detecting statistical differences in levels of 6 cytokines associated with cytokine storm (IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α) between patients with moderate COVID-19, severe COVID-19, and ARDS or sepsis.RESULTSFifteen hospitalized COVID-19 patients, 9 of whom were critically ill, were compared with critically ill patients with ARDS (n = 12) or sepsis (n = 16). There were no statistically significant differences in baseline levels of IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and critically ill controls with ARDS or sepsis.CONCLUSIONLevels of inflammatory cytokines were not higher in severe COVID-19 patients than in moderate COVID-19 or critically ill patients with ARDS or sepsis in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 may be unwarranted.FUNDINGFunding was received from NHLBI K23 HL125663 (AJR); The Bill and Melinda Gates Foundation OPP1113682 (AJR and CAB); Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 NIH/NIAID U19AI057229-16; Stanford Maternal Child Health Research Institute; and Chan Zuckerberg Biohub (CAB).


Subject(s)
Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Sepsis/immunology , Adult , Aged , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Female , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-18/blood , Interleukin-18/immunology , Interleukin-1beta/blood , Interleukin-1beta/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Respiratory Distress Syndrome/blood , Sepsis/blood , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
18.
Clin Exp Immunol ; 201(1): 76-84, 2020 07.
Article in English | MEDLINE | ID: covidwho-628822

ABSTRACT

Effective laboratory markers for the estimation of disease severity and predicting the clinical progression of coronavirus disease-2019 (COVID-19) is urgently needed. Laboratory tests, including blood routine, cytokine profiles and infection markers, were collected from 389 confirmed COVID-19 patients. The included patients were classified into mild (n = 168), severe (n = 169) and critical groups (n = 52). The leukocytes, neutrophils, infection biomarkers [such as C-reactive protein (CRP), procalcitonin (PCT) and ferritin] and the concentrations of cytokines [interleukin (IL)-2R, IL-6, IL-8, IL-10 and tumor necrosis factor (TNF)-α] were significantly increased, while lymphocytes were significantly decreased with increased severity of illness. The amount of IL-2R was positively correlated with the other cytokines and negatively correlated with lymphocyte number. The ratio of IL-2R to lymphocytes was found to be remarkably increased in severe and critical patients. IL-2R/lymphocytes were superior compared with other markers for the identification of COVID-19 with critical illness, not only from mild but also from severe illness. Moreover, the cytokine profiles and IL-2R/lymphocytes were significantly decreased in recovered patients, but further increased in disease-deteriorated patients, which might be correlated with the outcome of COVID-19. Lymphopenia and increased levels of cytokines were closely associated with disease severity. The IL-2R/lymphocyte was a prominent biomarker for early identification of severe COVID-19 and predicting the clinical progression of the disease.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Interleukin-2 Receptor alpha Subunit/blood , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , T-Lymphocytes/virology , Aged , Aged, 80 and over , Betacoronavirus/immunology , Biomarkers/blood , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19 , China/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Progression , Female , Ferritins/blood , Ferritins/immunology , Humans , Interleukin-10/blood , Interleukin-10/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Leukocyte Count , Male , Middle Aged , Neutrophils/immunology , Neutrophils/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Procalcitonin/blood , Procalcitonin/immunology , Prognosis , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
19.
Ann Allergy Asthma Immunol ; 125(5): 503-504, 2020 11.
Article in English | MEDLINE | ID: covidwho-628802

Subject(s)
Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Coronavirus Infections/prevention & control , Cytokine Release Syndrome/prevention & control , Dexamethasone/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Administration, Inhalation , Angiotensin-Converting Enzyme 2 , Asthma/immunology , Asthma/pathology , Asthma/virology , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/genetics , Endoribonucleases/immunology , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-8/antagonists & inhibitors , Interleukin-8/genetics , Interleukin-8/immunology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Severity of Illness Index , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
20.
Am J Respir Crit Care Med ; 202(6): 812-821, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-614625

ABSTRACT

Rationale: Coronavirus disease (COVID-19) is a global threat to health. Its inflammatory characteristics are incompletely understood.Objectives: To define the cytokine profile of COVID-19 and to identify evidence of immunometabolic alterations in those with severe illness.Methods: Levels of IL-1ß, IL-6, IL-8, IL-10, and sTNFR1 (soluble tumor necrosis factor receptor 1) were assessed in plasma from healthy volunteers, hospitalized but stable patients with COVID-19 (COVIDstable patients), patients with COVID-19 requiring ICU admission (COVIDICU patients), and patients with severe community-acquired pneumonia requiring ICU support (CAPICU patients). Immunometabolic markers were measured in circulating neutrophils from patients with severe COVID-19. The acute phase response of AAT (alpha-1 antitrypsin) to COVID-19 was also evaluated.Measurements and Main Results: IL-1ß, IL-6, IL-8, and sTNFR1 were all increased in patients with COVID-19. COVIDICU patients could be clearly differentiated from COVIDstable patients, and demonstrated higher levels of IL-1ß, IL-6, and sTNFR1 but lower IL-10 than CAPICU patients. COVID-19 neutrophils displayed altered immunometabolism, with increased cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, HIF-1α (hypoxia-inducible factor-1α), and lactate. The production and sialylation of AAT increased in COVID-19, but this antiinflammatory response was overwhelmed in severe illness, with the IL-6:AAT ratio markedly higher in patients requiring ICU admission (P < 0.0001). In critically unwell patients with COVID-19, increases in IL-6:AAT predicted prolonged ICU stay and mortality, whereas improvement in IL-6:AAT was associated with clinical resolution (P < 0.0001).Conclusions: The COVID-19 cytokinemia is distinct from that of other types of pneumonia, leading to organ failure and ICU need. Neutrophils undergo immunometabolic reprogramming in severe COVID-19 illness. Cytokine ratios may predict outcomes in this population.


Subject(s)
Acute-Phase Reaction/immunology , Carrier Proteins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cytokines/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Membrane Proteins/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Thyroid Hormones/metabolism , alpha 1-Antitrypsin/immunology , Acute-Phase Reaction/metabolism , Adult , Aged , Betacoronavirus , Blotting, Western , COVID-19 , Case-Control Studies , Community-Acquired Infections/immunology , Community-Acquired Infections/metabolism , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Critical Illness , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Hospitalization , Humans , Intensive Care Units , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Length of Stay , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Pandemics , Phosphorylation , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Receptors, Tumor Necrosis Factor, Type I/immunology , SARS-CoV-2 , Severity of Illness Index , alpha 1-Antitrypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL